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Abstract

When an auto-associative neural network is trained within any conceptual space, the many rules and schema embodied within that
knowledge domain are encoded through its many connection weights and biases. For instance, if such a network’s input /output exemplars
consist of numerous formulas representing known chemical compounds, subsequent network training will produce connection traces that
embody the many implicit rules governing the constraints between constituent elements and their allowed proportionalities. That is to say,
the net has gained a statistical ‘insight’ into the patterns of bonding, valence, and charge balance that must be observed in theorizing new
chemical compounds. If that network is now made chaotic by random perturbation of its processing elements and connection weights, the
resulting network activations will represent the formulas of a wide variety of plausible compounds, many of which may be considered
novel from the standpoint of network training. We therefore attain an all-neural search engine for generating a stream of plausible
chemical possibilities. Adding subsequent ‘policing’ networks to associate these emerging chemical formulas with various physical and
chemical properties, we are able to either filter for sought characteristics or alternatively, assemble expanding materials tabulations of
potentially new compounds and their estimated properties. Here, we describe the theory, construction, function, and results of just such an
autonomous materials discovery machine, tailored specifically to the search for new ultrahard binary compounds.  1998 Elsevier
Science S.A. All rights reserved.

Keywords: Creativity machine; Autonomous discovery; Ultrahard materials; Neural networks; Neural network cascades; Auto-associative networks; Virtual
input effect; Attractor basins; Neural network skeletonization; Schema elucidation

1. Introduction internal imagery and brainstorming [8,11–14]. The utility
of such a search engine is the rapidity by which the

If we bombard the input units of an associative network underlying associative net may be rapidly trained using
with random values, the network’s output patterns tend to only historical data. We thereby bypass the often tedious
cluster around those of its known training exemplars. Such and time-consuming chores of assembling the underlying
a process is commonly known as vector completion. If, on rule or model bases.
the other hand, the inputs of the net are zeroed, while Supplying any number of critic networks that may
random perturbations are allowed to ‘hop’ from one supervise the stream of outputs produced by such a
connection weight to another, we see a related phenom- continuously perturbed net, we form an automated, all-
enon: Now network output activations visit a mixture of neural search engine [15,16]. Recently such virtual ma-
both known training outputs and slightly degraded forms chines have been coined ‘Creativity Machines’ and have
that retain many of the implicit constraints contained been shown to perform optimally at mathematically re-
within the original training set. The overall network producible regimes of internal perturbation. To illustrate
process of responding to internal perturbations, as though the utility of such a Creativity Machine within a chemical
some environmental feature is present at the net’s inputs, is knowledge domain, we consider an auto-associative net-
known as virtual input effect [9]. The driver of this process work that has been trained through some standard
is coined ‘internal vector completion’ to differentiate it paradigm such as backpropagation [5] using a training set
from the traditional completion paradigm of supplying of chemical compounds of the general binary form A B .x y

incomplete or ‘noisy’ vectorial inputs to a net. Using either Here, A and B represent some choice of elements, that
of these effects separately, or in combination, we devise an ultimately constrains the allowed choices of stoichiomet-
all-neural search engine that may freely roam through any ries x and y. The representation of compounds may consist
conceptual space in a process tantamount to human of the ground state electronic shell configuration (i.e., its
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2core, s, p, d and f electron occupation numbers) of the outputs representing H O , but not OH (i.e., OH ).2 2

constituent elements A and B, along with analog values for Similarly, other perturbations may produce outputs repre-
the stoichiometric subscripts x and y. senting Si N , that may have been a training exemplar, or3 4

We note and emphasize that the trained net is not to be C N that may now be a generalization of the original3 4

regarded as a simple mapping in which network inputs are training exemplars (i.e., it is isoelectronic with Si N ).3 4

simply copied at the net’s outputs. Instead, the reader In essence, each of the chemical training exemplars now
should focus on the resulting vectorial chemical repre- forms a ‘memory’ within the network, represented by a
sentation encoded within the net’s hidden layers and then deep attractor basin. By converting the autoassociative
decoded at the net’s outputs. Referencing Fig. 1(a), we see network of Fig. 1(a) into a recurrent net and then iterative-
that the constraint relations between all attributes (i.e., ly recirculating outputs back into inputs, the network will
chemical elements and their stoichiometries) are now most likely fall into one of these attractor basins when
encrypted within the network’s connection weights. There- presented with a random input seed (i.e., noise). Alter-
fore, output nodes (shown at the bottom of the figure) may natively, the network could fall into a shallower attractor
not arbitrarily activate. They must obey the constraints basin that is not representative of any of its training
gleaned within the training and inherent to the implicit exemplars (i.e., a confabulation or false memory that
rules of chemical bonding between elements. Therefore, embodies most of the statistical constraints of chemical
applying the electronic representations for hydrogen and bonding). By its very nature, the emerging chemical
oxygen to the inputs of the net, the most likely stoichio- compound, say C N , is plausible, since the myriad3 4

metric outputs of the net would be either x52 and y51 constraints of the conceptual space are being exercised.
(i.e., H O) or x52 and y52 (i.e., H O ). Here, the net is ‘seeing’ the similar valence shell configu-2 2 2

Hence the utility of such an auto-associative net is its rations for both silicon and carbon, ignoring the electron
inherent ability to perform vector completion wherein cores, to produce the most likely chemical subscripts for
incomplete or missing information at the network’s inputs the compounds three and four.
is filled in at its outputs. Therefore, as depicted in Fig. As implied above, the real utility of the full auto-
1(b), if the network has been adequately trained, it may be associative net is the ability to predict multiple stoich-
presented with both the correct electronic representations iometries for any given elements A and B. Therefore,
for hydrogen and oxygen and chemically implausible pinning the inputs of the net to representations of hydrogen
subscripts of 1.3 and 0.8. Through its cumulative training, and oxygen, we may introduce random seeds for the
perhaps upon thousands of other binary chemical com- stoichiometries x and y, Fig. 2(a) and b. Depending upon
pounds, the network will supply realistic stoichiometries at the values of the seeds, network activation will tend to
its outputs, approaching values of two and one. Repeating bifurcate into the output states approaching those repre-
this procedure, we could perhaps maintain hydrogen and senting H O or H O . Successive recirculations of outputs2 2 2

oxygen as the input elements, but now apply different back through the inputs will successively move the x, y
random stoichiometric ‘seeds’ of 1.8 and 2.5 for the x, y subscripts quantitatively toward the attractors (2,1) or (2,2)
subscripts. Now the stoichiometric outputs may settle into hence generating two plausible chemical compounds.
states approaching two and two (i.e., H O ). We therefore Repeating this procedure of supplying various elemental2 2

define a technique that allows us to predict multiple combinations A and B, along with random stoichiometric
stoichiometries for the same input combination of elements input seeds, and allowing the network to converge to an
A and B. The chemical formulas emerging from such a agreement between input and output vectors, we may
network obey the cumulatively gleaned statistical con- produce myriad plausible chemical compounds. This de-
straints of chemical stoichiometry, suggesting a wide range vice then constitutes a chemical search engine that readily
of neutral chemical species. Therefore we may see network ‘imagines’ candidate compounds whose physical properties

Fig. 1. (a) Auto-associative net mapping binary chemical compounds identically to themselves. Here, the application of the training exemplar H O to the2

net’s inputs (top) produces H O at the net’s outputs (bottom); (b) Application of incorrect stoichiometries x and y, along with the correct representations2

for the elements hydrogen and oxygen, produces corrected subscripts, representing H O. This filling in of incomplete or ‘noisy’ inputs is the process known2

as vector completion.
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Fig. 2. (a) Converting the auto-associative net of Fig. 1 to a recurrent net, we may iteratively arrive at plausible stoichiometries x and y for any elements A
and B. Convergence of the network to a potential chemical species occurs when the vector distance, z, between vector input (top) and output (bottom) falls
below some predetermined threshold; (b) For the specific example of hydrogen and oxygen, the properly trained auto-associative network will possess two
principal attractor basins corresponding to H O and as intimated in the idealized plot above. There, the z-axis corresponds to the vector distance between2

network inputs and outputs.

may be estimated by downstream hetero-associative net- ultrahard material based upon structural and electronic
works. Here on, we use the term ‘Creativity Machine’ to similarities with other known low compressibility solids.
represent this cumulative neural network cascade that first In the case of these researchers, the investigation of C N3 4

imagines chemical possibilities via such stochastic pro- was motivated by its close correspondence with the beta
cesses within its initial network stages, then passing these phase of Si N . Using a well-known empirical relation3 4

chemical candidates to downstream hetero-associative nets derived by Van Vechten [3] relating bulk modulus (i.e., its
that now estimate a wide range of properties based upon microscopic hardness) to bond length for tetrahedral solids,
these chemical formulas. the corresponding beta phase of carbon nitride was ex-

In a preliminary exercise of this materials Creativity pected to possess a bulk modulus approaching, or perhaps
Machine, a dynamic database has been generated consist- exceeding that of diamond.
ing of potential binary compounds having the formula Specifically, the Van Vechten equation takes the form
A B . The materials properties estimated by the down-x y

3.5stream network modules within this machine have included B 5 (19.71 2 2.20l) /d , (1)
a number of important physical characteristics including
projected Mohs scale hardness. Following prolonged runs where B is the bulk modulus in megabars, d is the bond
of this Creativity Machine, the resulting materials data- length in angstroms, and lambda is a measure of ionicity of
base, embedded within Microsoft Excel spreadsheets, the compound. The constant 19.71 is inferred from the
could be ranked in terms of certain physical or chemical band gap calculated from reflection spectra, thereby quali-
attributes. Concentrating on the predicted hardness of these tatively yielding some estimate of the energetic difference
materials, potentially new ultrahard compounds could be between the bonding and anti-bonding states of the materi-
isolated, thus paving the way to a powerful materials al (i.e., the energetic difference between constituent atoms
discovery technique. Overall reliability of this materials of both elements (1) chemically bound within a crystal
search paradigm technique was evaluated in terms of (1) lattice and (2) at infinite separation). Based upon the initial
the plausibility of the emerging chemical compounds, (2) assumption that the carbon nitride structure would be
the accuracy of the resulting physical properties and (3) tetrahedral and of low ionicity, initial estimates for the
the relative proportion of new compounds generate above bulk modulus of this theoretical material exceeded that of
and beyond the initially available training exemplars. diamond, thus motivating a series of highly ambitious band

calculations requiring substantial computational resources.
The ensuing computation showed a slight deviation from

2. The traditional path to ultrahard materials the initial structural assumption of a tetrahedral network to
discovery distorted derivative thereof, as well as larger than antici-

pated values of the ionicity parameter lambda. Still, based
For comparison, perhaps the most recent and sophisti- upon lingering uncertainties in the estimation of the

cated example of the theoretical anticipation of new ionicity parameter, there remained sufficient enthusiasm to
ultrahard materials stems from the work of Liu and Cohen motivate the synthesis and characterization of this material.
[1,2] wherein a combination of empirical and ab initio These efforts still persist within various prestigious lab-
approaches have been pursued. The overall pattern of oratories around the world. However, the lack of reproduc-
discovery consists of an intuitive choice for the new ible results in synthesizing this material suggests a possible
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failure in anticipating the overall thermodynamic stability component representing the element’s helium core (Z52)
of the material. along with 2 s and 2 p valence shell electrons. Each

In short, the search carried out by Liu and Cohen was compound was represented by a supervector containing
tantamount to the proposed Creativity Machine Paradigm four subvectors representing the four possible elements,
wherein a new compound and phase was generalized (i.e., followed by four analog values representing the respective
imagined from past materials patterns by biological neural stoichiometric subscripts. Therefore, the formula for water,
networks) from known materials and then evaluated for H O, would be represented through the vectorial notation2

hardness using computer algorithms. This scheme is very ((0,1,0,0,0), (2,2,4,0,0), (0,0,0,0,0), (0,0,0,0,0), (2, 1, 0, 0)).
similar to the intended connectionist plan to generate a The general template for representing a chemical com-
host of materials, isoelectronic with known, characterized pound took the form ((CoreA,As,Ap,Ad,Af),
materials, and then to evaluate the hardness of each of (CoreB,Cs,Cp,Cd,Cf), (CoreC,Cs,Cp,Cd,Cf),
these candidates compounds. A major difference is that the (CoreD,Ds,Dp,Dd,Df), (sA,sB,sC,sD)), with A,B,C and D
hardness evaluation will be carried out not by algorithmic denoting the four elements, and sA,sB,sC and sD, the
means, but by a second neural network trained to recognize respective subscripts of these elements within the com-
the underlying patterns of hardness as they relate to pound formula.
chemical formula. As qualification on the emerging materi- In all, 11 separate feedforward nets were trained in
als, we will simultaneously predict thermodynamic stabili- constructing the planned cascade. The commercially avail-

TMty (as well as other accompanying properties), through the able trainer Neuralyst was used in training these nets,
free energy of formation, so as to eliminate the purely using standard backpropagation, gradient descent meth-
theoretical possibilities from those attainable within the odology. Using Neuralyst’s built in genetic supervisor, the
laboratory. hidden layer architecture and learning parameters were

optimized for each network module using reserved test
data. Below, we summarize the particulars for selected

3. Construction and operation of the materials component network modules within the overall Creativity
discovery Machine cascade.

3.1. Network training 3.2. Element generators (network 1)

Over a period of roughly 3 years, a database of over A three layer auto-associative net (Fig. 3), was trained
20 000 inorganic compounds, each containing at most four to reproduce electronic configurations of the first 100
distinct chemical elements, were collected from a variety elements in the periodic table. Using the vectorial repre-
of sources. The assembled information consisted of chemi- sentation discussed above, training proceeded until outputs
cal formula, melting point, density, free energy of forma- of the net agreed with its inputs to within 1% rms of the
tion, and lattice constants gleaned from numerous X-ray total range of each network output. This net was then
crystallography databases. In building a separate hardness converted to a spreadsheet network [12] by linking spread-
database, approximately 400 mineralogical examples were sheet cells containing sigmoidal squashing functions by
accumulated (largely from the 1996 CRC Handbook and relative references weighted by the trained-in connection
mineralogical texts such as that by Pough, 1960 [4]). weight values. Linking outputs to inputs using a VBA
About 200 additional hardness values were assembled
from the scattered literature on ultrahard materials, usually
reported as values in Gpa or Knoop values. Since the
majority of the data was mineralogical and reported in
terms of Mohs scale hardness, small feedforward nets were
trained to convert the Gpa and Knoop values to approxi-
mate Mohs values.

Once assembled into spreadsheet format, both databases
were processed using a combination of parsing and conver-
sion schemes that translated chemical formulas, repre-
sented in ASCII code, to numerical values representing the
respective ground state electronic configurations of the
respective component elements. Each element was repre-
sented by a vector consisting of five components, the

Fig. 3. 5 /5 /5 Recurrent network 1, used to generate elemental electronnumber of core electrons (i.e., its inert gas core), and four
configurations. Any internal noise (shown as stars) introduced to the

numbers denoting the element’s s, p, d and f shell valence connection weights and successive passes through the net will result in
shell populations. Therefore an element such as carbon was vector completion and the generation of a valid elemental electron
represented as the vector (2, 2, 2, 0, 0), with the first configuration.
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(Visual Basic for Applications) patch, the feedforward net propagation to downstream hetero-associative nets that
was converted to a recurrent architecture. The introduction evaluated various physical properties (nets 4–11).
of small perturbations to any of the network’s connection It is to be noted that nodal architecture chosen for this
weights would launch a succession of recursive cycles of network was determined by minimization of training error
that net, through which internal vector completion would (in contrast to testing error). This unusual deviation from
produce a valid electronic configuration for some element, standard operating procedure was followed in order to
A. Fully exploiting the portability of the spreadsheet assure that the auto-associative net memorized all 10 000
implementation, three copies of this recurrent net were chemical training patterns. Such an approach is consistent
cloned by copy and paste commands. All four copies of with Creativity Machine design as prescribed in Thaler,
this net were placed side by side within the spreadsheet. 1997 [15] and with the underlying Creativity Machine
Their role was to randomly generate elemental combina- theory [16], wherein useful ideas (i.e., novel chemical
tions A, B, C and D, thereby driving the Creativity compounds) are nothing more than degraded memories
Machine search and initiating the propagation of stochas- induced by internal damage or noise within the network.
tically generated chemical information through the cas-
cade. 3.4. Charge evaluator (network 3)

3.3. Stoichiometry generator (network 2) A three layer feedforward network (Fig. 5) was trained
to 3% rms of its total output range of nine charge units.

A three layered auto-associative net was likewise trained The training set consisted of approximately 3000 exemp-
to within 1% rms error of each output parameter’s range, lars, approximately 800 of which were known ionic
Fig. 4. Input and output vectors consisted of only valence species. The remainder of the training set was made up of
shell configurations and not the full electron configurations known neutrals borrowed from the 10 000 compounds
output by network A. This architectural decision was taken used for stoichiometry training. Inputs to the net consisted
to calculate stoichiometry purely by generalization to of the valence shell configurations of each constituent
similar, isoelectronic configurations within the training set. element along with the x and y stoichiometries. In Fig. 6, a
Therefore, in this scheme, C N and Si N would appear correlation plot for the trained network contrasting network3 4 3 4

indistinguishable at this level of cascade processing. Once charge prediction with the actual charge is shown.
trained on over 10 000 chemical compounds, this net was
likewise converted to the spreadsheet format. Appended to 3.5. Free energy evaluator (network 4)
each of the connection weights within the Excel formula-
tion, was a small chaotic term whose amplitude depended A three layer network (Fig. 7) was trained to within 6%
upon the estimated charge of the imagined chemical rms error for the total free energy range of the training

21species (calculated by network 3, below). Therefore, as exemplars, 2450 to 150 kcal mole . Inputs consisted of
long as the net calculated charge on the candidate com- the electronic representation of the four element compound
pound was non-zero, recursion between outputs and inputs and accompanying stoichiometries x and y. A correlation
could not settle within an attractor basin. When a neutral plot showing the accuracy of network predictions of free
chemical species was finally imagined by network 2, the energy of formation is shown in Fig. 8.
compound representation was made available for further

3.6. Mohs scale hardness evaluator (network 5)

A three layer network (Fig. 9) was trained to within 3%
rms error in mapping binary compounds to their antici-
pated Mohs scale hardness. In all, 339 training exemplars
were used in training this net, chosen largely from

Fig. 4. 20 /10/20 Recurrent network 2, used to generate plausible
stoichiometries. s, p, d and f electron configurations representing as many
as four separate elements, are generated in the preliminary network
modules and transmitted to inputs of this net. Following successive
recursions, outputs sA, sB, sC and sD yield plausible stoichiometry for Fig. 5. 24 /15/1 Feedforward net 3, used to evaluate charge on chemical
the compound A B C D . species imagined by network 2.sA sB sC sD
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Fig. 9. 24 /12/1 Feedforward net, used to evaluate free energy of
formation of the imagined compound.

set, carbon is represented as diamond and not graphite, Fig.
Fig. 6. Predicted versus actual charge for the fully trained network 3. 10.
Twenty percent of the data shown in the plot represents reserved test data.

3.7. Remaining hetero-associative nets

In a similar fashion to the nets used to calculate
hardness and free energy of formation, separate network
modules were trained to relate chemical formulas emerging
from network 2 to; (1) melting point, (2) density and (3)
lattice parameters gleaned from X-ray crystallographic
data. Training error for each of these nets was maintained
below 10% rms error.

3.8. Cascade construction

Fig. 7. 24 /11/1 Feedforward net 4, used to evaluate free energy of
All 11 of the network modules discussed above wereformation of the imagined compound.

converted into Excel spreadsheet format and pasted within
an Excel Worksheet in the relative positions shown in Fig.mineralogical references. If for any given compound

within the net’s training set there arose a choice of phase,
the hardest of the room temperature and atmospheric
pressure phases was chosen. Therefore, within this training

Fig. 8. Predicted versus actual free energy of formation for the fully Fig. 10. Predicted versus actual free energy of formation for the fully
trained network 4. Twenty percent of the data shown in the plot trained network 5. Twenty percent of the data shown in the plot
represents reserved test data. represents reserved test data.
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Fig. 11. Overall cascade structure showing placement of the trained network modules discussed above. The stars indicate stochastic inputs to the four clone
networks generating plausible elemental electron configurations as well as random seeds for the initial guess of stoichiometry.

11. Where stochastic noise sources were required, as zero (i.e., a neutral species), the perturbations to the
indicated by the stars, cells were filled with the resident internal connection weights likewise ceased, allowing the
Excel function rand(), yielding pseudorandom numbers now quiescent net to fall into one of its attractor basins,
between zero and one, the typical input range for computa- and hence into a state representing a valid chemical
tional neurons. Thus, noise terms were applied to the compound. If the estimated charge was non-zero, the
connection weights within the four networks labelled 1a– introduced chaos within network 2 prevented it from
d, corresponding to the four initiating elements A, B, C recurrently converging to consistent output and input
and D. Likewise the inputs of network 3, determining net vectors.
charge on the imagined species were connected to the Having generated a plausible chemical formula, the
outputs of network 2, containing the electronic configura- representation of that formula was then passed to each of
tion and stoichiometries within each imagined compound. five hetero-associative nets that estimated values for
The output of net 3, the estimated charge, was then standard free energy of formation, Mohs scale hardness,
multiplied by random factors supplied by the random melting point, density, and the lattice constants a, b and c.
function and then distributed by relative reference to each It was at this point that the generation cycle was
of the connection weights in network 2. All of the outputs reinitiated, beginning with the stochastic activation of the
of network 2 were manually connected by relative refer- network 1 clones.
ence to the inputs of all the downstream network modules Following each cycle of compound generation and
used to calculate materials properties. properties evaluation, the imagined compound A B wasx y

then submitted and compared with a static database of
3.9. Cascade operation 4000 known compounds that had been reserved for net-

work testing. If the imagined compound matched a for-
Applying perturbations to the connection weights of all mula within this reserved database, the network deter-

four initiating networks labelled 1a–d, each activated into mined subscripts x and y were logged along with the actual
states representing the ground state electronic configura- subscripts into a table that was then later used to examine
tions of four randomly chosen chemical elements. In this the correlation between predicted and actual stoichiomet-
study, however, we utilized only two of these networks, ries. Also, as part of the runtime diagnostics, we have
representing elements A and B, respectively. The outputs tracked the total number of compounds imagined, the
of the remaining two networks, normally corresponding to number of compounds falling outside of the training set
elements C and D, were pinned at values of zero. (Future (i.e., invented, in contrast to memorized compounds), as
runs of this Creativity Machine will allow similar stochas- well as a number of cross checks to examine the validity of
tic choices of elements C and D to form potential the cascade properties predictions.
quaternaries).

The first two stoichiometry nodes were set to random
values, while the last two of this group were set to zero to 4. Results
indicate the absence of elements C and D. Network 2 was
then run recurrently until the vector distance between In this initial run of the materials Creativity Machine,
normalized input and output vectors fell to 0.001. At each roughly 81% of the imagined compounds were found to be
cycle of the recursion, network 3 estimated the charge on distinct from those contained within the initial training set
the chemical species appearing at the outputs of network 2. of 10 000 compounds. While we cannot be perfectly
As long as this calculated charge approached a value of assured of the plausibility of all compounds imagined, we
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imagination engine is realistically predicting the stoichiom-
etry of ‘unseen’ compounds. We note of course that there is
an inherent spread in the recommended subscripts with
slightly less than quantitative predictions. This qualitative
prediction of chemical formula may therefore be thought
of as a form of fuzzy chemistry that would help the
experimentalist to zero in on promising chemical possi-
bilities.

We show below the resulting data for the hardest of the
materials generated during the autonomous run of the
Creativity Machine. These consist primarily of carbides,
borides, and beryllides, silicides, and surprisingly, a host of
intermetallics, as shown in Tables 1–5, where we show
some of the hardest materials within each grouping. In

Fig. 12. Predicted versus actual x stoichiometry for 1000 of the predicted each of these tables, the candidate compounds have been
compounds.

ranked in ascending order by free energy of formation.
Therefore, materials at the top of each table are deemed
more plausible in terms of chemical stability.may contrast the stoichiometries predicted by the imagina-

In interpreting the stoichiometry of each of the predictedtion engine and contrast them against corresponding
compounds, we note that when the generated compoundinstances found within a reserved database of inorganic
matches some entry within the reserved materials database,chemical compounds. Figs. 12 and 13 show that the
subscripts have been converted to the integer values (i.e.,
C S in Table 1) encountered there. However, in the1.00 1.00

case that the imagined compound could not be found
within the reserved data base, the fuzzy chemical
subscripts have been retained. Therefore, a compound of
the form A B could be interpreted as either a0.75 1.00

fractional stoichiometry material or, rounding subscripts to
appropriate integer values, as A B .3 4

The hardest and most stable phase projected by this
Creativity Machine run may be seen in the carbide listing
of Table 1, as the entry C C , symbolizing in our1.00 1.00

representation the pure element carbon. We note however,
that this material may not represent the graphitic or
diamond phase, owing to the large negative free energy of

21formation (i.e., these values are 0 and 10.64 kcal mole
for graphite and diamond, respectively), and the low space
symmetry suggested by the projected lattice constants a, bFig. 13. Predicted y versus actual y stoichiometry for 1000 of the

predicted compounds. and c. This material may instead represent a low symmetry

Table 1
Ultrahard carbides imagined by the Creativity Machine and ranked by descending chemical stability

0 ˚ ˚ ˚A x B y DG MP (8C) Mohs Density xtala(A) xtalb(A) xtalc(A)f
21 23(kcal mole ) Hardness (g cm )

C 1.72 H 1.01 2122.14 2172 9.71 2.29 9.01 8.55 6.15
C 1.00 C 1.00 2120.55 2922 9.80 2.36 4.98 5.20 3.94
C 1.00 Si 1.00 295.74 2979 9.75 2.55 5.53 5.72 4.09
C 2.00 Mg 1.00 293.46 1802 9.76 3.02 4.64 5.00 3.98
C 1.71 K 1.01 286.7 1223 9.72 2.80 9.37 8.98 6.46
B 1.73 C 1.35 275.9 2392 9.71 2.71 4.75 5.03 3.90
C 2.00 Ca 1.00 275.87 1859 9.75 3.25 5.27 5.61 4.17
C 2.00 Ra 1.00 245.42 1915 9.74 8.60 8.19 8.48 5.30
C 1.00 U 1.00 226.04 2567 9.72 13.24 6.43 6.78 4.21
C 1.88 Np 1.13 225.11 2517 9.81 12.39 6.86 7.13 4.53
C 1.88 Pu 1.13 221.18 2653 9.82 13.06 6.66 6.93 4.41
C 1.87 Cm 1.11 210.6 2902 9.77 16.58 5.52 5.87 3.77
C 1.87 Cf 1.11 24.27 3070 9.78 17.61 5.46 5.76 3.65
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Table 2
Ultrahard borides imagined by the Creativity Machine and ranked by descending chemical stability

0 ˚ ˚ ˚A x B y DG MP (8C) Mohs Density xtala(A) xtalb(A) xtalc(A)f
21 23(kcal mole ) Hardness (g cm )

B 1.73 C 1.35 275.90 2392 9.71 2.71 4.75 5.03 3.90
B 1.00 H 1.00 250.35 1301 9.78 2.31 8.60 8.22 5.58
B 1.00 Li 1.00 246.20 1355 9.77 2.33 8.69 8.32 5.66
B 2.00 Be 1.00 238.69 1527 9.74 2.46 4.28 4.66 3.67
B 1.00 Na 1.00 230.09 1619 9.69 2.45 8.94 8.60 5.89
B 1.93 Pb 1.74 26.75 831 9.79 11.24 8.34 7.90 3.57
B 1.00 Rb 1.00 2.93 1483 9.69 3.35 8.50 8.39 6.10
B 1.94 Bi 1.86 4.25 1724 9.77 11.71 9.39 8.81 3.72
B 1.93 Np 1.18 19.25 2252 9.75 11.32 6.96 7.27 4.20
B 2.00 Pu 1.00 19.75 2262 9.77 12.00 6.75 7.04 4.12

phase of pure carbon, perhaps some distorted form of We may also generalize this potential crystalline phase
bridged graphite [7]? Another potential carbon-based to a family of disordered boron networks, a – B:H,
ultrahard compound shown in Table 1, is C H analogous to the glassy carbons. Among the silicides1.72 1.01

(perhaps C H ), perhaps intimating in general that hydro- (Table 4), we see a fairly plausible and potentially stable2 1

gen-deficient carbon networks (i.e., a – C:H) may in fact ultrahard compound B Si. Table 5, is surprising, in that a2

approach diamond in hardness. host of fairly stable and ultrahard phases are proposed.
One of the more plausible, ultrahard borides encoun- Among the beryllides (Table 3), the hardest and most

tered in Table 2, is B H . Such a material would be plausible projected materials are Be H and Be Li.1.00 1.00 2 2

analogous to the hydrogen-deficient carbon networks dis-
cussed above. In contrast to the case with carbon, however, 4.1. Observations from network skeletonization
hydrogen would no longer be terminal, but a bridging atom
between borons. The additional bond energy per unit Using a feedforward network trained on the same
volume would then significantly contribute to the overall cumulative database as that used for Creativity Machine
hardness of this material. Cascade, it was possible to map from the electronic

Table 3
Ultrahard beryllides imagined by the Creativity Machine and ranked by descending chemical stability

0 ˚ ˚ ˚A x B y DG MP (8C) Mohs Density xtala(A) xtalb(A) xtalc(A)f
21 23(kcal mole ) Hardness (g cm )

Be 1.85 Cl 1.72 2177.10 864 9.22 2.96 8.34 8.02 5.76
Be 2.00 Hg 1.00 263.65 1417 9.31 7.72 5.52 5.57 4.13
Be 2.00 Tl 1.00 247.00 611 9.53 7.46 5.49 5.49 3.79
Be 1.85 H 1.04 242.09 929 9.68 1.61 8.61 8.16 4.56
Be 1.85 Li 1.04 236.39 925 9.66 1.61 8.69 8.26 4.64
Be 2.00 Pb 1.00 218.95 599 9.69 7.58 7.24 6.89 3.78
Be 1.85 Na 1.04 216.05 915 9.50 1.74 8.91 8.53 4.92
Be 2.00 Mg 1.00 28.46 1299 9.35 1.95 5.36 5.68 3.68
Be 2.08 Bi 1.80 23.13 1235 9.54 7.84 9.75 8.98 3.95
Be 1.85 K 1.04 20.47 913 9.18 1.99 8.93 8.64 5.14

Table 4
Ultrahard silicides imagined by the Creativity Machine and ranked by descending chemical stability

0 ˚ ˚ ˚A x B y DG MP (8C) Mohs Density xtala(A) xtalb(A) xtalc(A)f
21 23(kcal mole ) Hardness (g cm )

Pd 2.00 Si 1.00 2111.51 1072 9.09 9.13 5.20 5.31 5.59
N 2.00 Si 1.00 2102.71 2796 9.61 2.34 6.23 6.30 4.22
P 2.00 Si 1.00 289.62 1505 8.85 2.08 6.41 6.45 4.80
B 1.73 Si 1.35 253.88 2076 9.66 2.81 5.18 5.46 4.01
Si 1.89 Tm 1.11 233.59 2052 8.24 6.13 7.79 7.74 4.94
Si 1.00 Th 1.00 231.97 1725 9.12 7.97 7.39 7.78 4.91
Si 1.00 U 1.00 226.66 1745 9.24 9.45 7.29 7.62 5.10
Si 1.88 Tb 1.12 225.80 1984 8.48 5.86 7.54 7.63 5.17
Si 1.86 Tl 1.54 210.31 1872 8.17 8.28 7.26 7.10 3.43
Mn 1.75 Si 1.31 10.62 1166 8.43 6.14 4.54 4.87 5.54
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Table 5
Ultrahard intermetallics imagined by the Creativity Machine and ranked by stability

0 ˚ ˚ ˚A x B y DG MP (8C) Mohs Density xtala(A) xtalb(A) xtalc(A)f
21 23(kcal mole ) Hardness (g cm )

Cm 2.09 Hg 1.37 288.70 1742 9.93 14.80 4.55 4.68 4.77
Gd 2.09 Hg 1.37 284.86 634 9.96 11.15 5.54 5.58 5.05
Gd 2.00 Ti 1.00 280.09 1222 9.96 10.61 5.61 5.59 4.64
Nb 2.29 Tl 1.66 264.78 1137 9.98 10.71 6.59 6.56 6.89
Th 2.12 Tl 1.60 259.63 1176 9.96 12.49 4.47 4.60 4.69
Mo 2.20 Tl 1.64 253.14 1246 9.99 10.79 6.59 6.50 6.73
Cf 2.05 Ir 1.21 246.75 2094 9.94 17.39 5.45 5.45 5.64
Ru 2.03 Tl 1.61 233.13 1117 9.99 10.38 6.50 6.30 6.42
Bk 2.13 Ir 1.27 232.20 2191 9.98 17.06 5.35 5.35 5.33
Rh 1.96 Tl 1.61 225.58 668 9.99 10.06 6.36 6.13 6.28
Gd 2.10 Os 1.22 225.33 2384 9.94 18.03 7.37 7.22 6.76
Mo 2.21 Pb 1.73 219.83 1310 9.99 9.43 6.42 6.37 7.31
Os 1.89 Po 1.69 212.60 2491 9.91 12.07 5.86 5.77 6.05
Ag 1.87 Ir 1.38 211.90 1757 9.92 13.07 4.42 4.43 5.05
Bk 2.13 Re 1.21 211.61 2893 9.98 18.32 6.25 6.13 6.14
Mo 2.21 Os 1.33 210.58 2319 9.98 15.15 7.10 6.88 5.31

representation and stoichiometry to 11 nodes representing some less crucial sublattice. This would therefore corre-
the respective Mohs scale classes (i.e., 0–1, 1–2,..., 9–10). spond to the well known cases of carbides, borides,
In Figs. 14 and 15, we see the network skeletonization (see beryllides, silicides, to form intrinsically hard sublattices
for instance McMillan et al., 1991 [6]) for both the softest that may be dressed with softer sublattices. We see that the
and hardest Mohs scale classes, representing the most electronic configuration of element one conspires with the
significant of weights within each of these respective stoichiometry of element two, through a hidden layer node,
mappings. We note that for the softest compounds, all to determine overall lattice hardness. This observation
electronic and stoichiometric parameters figure fairly uni- suggests that given sufficiently soft sub-lattice material
formly in the underlying schema determining that softness. (ie., element two), the harder lattice may be diluted, thus
The analogous skeletonization for ultrahard binary com- degrading its effective bulk modulus. Also note the
pounds shows the predominate role of one constituent significant role played by the s and p electrons within the
element over another, element one, in determining overall harder framework lattice, generally corresponding to the
hardness. This would indicate that for the most part, within well known bonding schemes within C, B, Be and Si
the ultrahards, a single element dominates in producing an sublattices.
already hard skeletal framework that is now occupied by

Fig. 14. Network skeletonization for ultrasoft materials. Fig. 15. Network skeletonization for ultrahard materials.
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from a chemical perspective. This latter case may be
representative of a solid made relatively incompressible
due to such physical mechanisms as the entrapment of
some incompressible atomic core within a chemically inert
framework. Examples of such compounds would include
the borides such as LaB and its analogs, in which larger6

cation radius generally results in increased bulk modulus
and hardness. We note that the hardest material discovered
so far within this class is diamond, with a positive free

21energy of formation of 0.69 kcal mole .Fig. 16. Network skeletonization of auto-associative net interrelating
Projecting from this main trunk are multiple classes ofmaterials properties. The revealed connection trace shows the prevalent

role of melting point, density, and lattice constants in determining Mohs binary compounds generally obeying a linear relationship
scale hardness. Note that overall, free energy of formation is not generally between hardness and chemical free energy per unit
a strong indicator of hardness. (Black weights are strongest, while gray volume. The highest of these branches, marked Mo, is
weights are of secondary importance.)

dominated by Molybdenum-based intermetallics such as
Mo Pb (Table 5), with an anticipated Mohs hardness2.21 173

Training and then skeletonizing (Fig. 16) an auto-as- of 9.99. A softer, but more pronounced branch occurs at
sociative net trained on the projected properties of 10 000 the line marked Pt largely containing Platinum-based
of the generated compounds reveals the critical factors that intermetallics such as Pd Pt . We note that each of1.77 1.41

generally contribute to hardness. The foremost observation these lines generally follow the kind of relationship
about this schema analysis is that free energy of formation intimated by Eq. (1), with modulus roughly scaling now as

2 3may not be a critical determiner of hardness, as evidenced d [10]. Another interesting trend line, designated Rh,
by the large numbers of ultrahard intermetallics generated represents a family of Rhodium compounds that starts at
by the Creativity Machine. upper right with the intermetallic Rh Tl (See Table1.96 1.6

Further clues as to the underlying hardness trends of 5), with a predicted Mohs scale hardness of 9.99 and
binary compounds comes from a plot of Mohs scale terminating with the softer material Rh Pd shows a1.38 1.86

hardness versus free energy density for the 4000 hardest positive slope, perhaps indicating the presence and domi-
materials projected by the Creativity Machine (Fig. 17). nance of ionic bonding within this structural series.
Within such a plot we see a thick band of ultrahard Another potential trend line, labelled X, runs parallel with
materials forming a vertical trunk and showing very little the Rh series. However, there was no obvious commonali-
standard free energy stabilization. This class of materials is ty among compounds falling on this line.
therefore either, (1) composed of single element phases, Similar analysis (Fig. 18) for the carbides, borides,
having by definition zero free energy of formation, or (2) beryllides, and silicides predicted by the Creativity Ma-
hetero-nuclear compounds that are inherently unstable chine linear trend lines with significantly more scatter than

Fig. 17. Plot of Mohs scale hardness versus chemical free energy per unit volume shows pronounced linear branches.
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5. Conclusions

5.1. The methodology

Having ‘seen’ a limited number of chemical compounds,
an auto-associative neural network may accurately general-
ize the rules of stoichiometry between arbitrary elements A
and B, allowing us to predict the formulas of as yet
unobserved chemical compounds. Making such a network
chaotic, we produce a powerful engine that may be used to
explore large chemical search spaces, readily identifying
binary compounds fulfilling a wide range of desired
physical or chemical attributes. Run without specific
search criteria, such a chemical Creativity Machine may
generate an ever-expanding database of both known and
unknown materials along with accompanying estimated
physical and chemical attributes. While admittedly sacrific-
ing some accuracy in the prediction of these materials
properties, extensive approximate databases of this kind
may be used to scope out whole families of materials
satisfying niche design requirements.

A certain degree of caution will always be necessary
when dealing with such machine-generated databases.
Because we are relying totally upon the internal ‘conversa-Fig. 18. Linear regression fits to data plots of Mohs scale hardness, H ,M

30 ˚ tion’ among neural networks within a sizable cascade, eachversus approximate free energy density (DG /A ) for ultrahard carbides,f

borides, beryllides, and silicides discovered by the binary compound of which has learned subtle, hidden patterns by exposure to
Creativity Machine. In each case, we note the roughly linear fit to the large materials databases, we are totally at the mercy of
data, indicating a dependence of hardness upon the lattice spacings, their cumulative ‘expertise’ as well as their potential
similar to the pattern of Eq. (1). We also note that each of these ultrahard

pathologies. Therefore, it would be reasonable to assumegroupings splits off from the main vertical trunk of Fig. 17, where we
that there will be occasional errors and exaggerations thatanticipate the elemental prototype structure. Proceeding from right to left,

we expect an increase in bond energy density, and hence hardness, as will be beyond the capabilities of human researchers to
covalent bonding between the base lattice and its interstitial lattice readily pinpoint. However, we may reasonably recommend
develops. For the carbide branch, for instance, the branch appears to this methodology within the context of increasing efforts in
originate from two sources, near H 510 and H |8, perhaps represent-M M the area of combinatorial and theoretical chemistry, whereing diamond and graphitic phases respectively. As the carbon lattice is

it is crucial to narrow down the most likely candidatedressed with interstitial atoms, we see an overall increase in hardness in
proceeding from right to left. The same trend is evident in the borides, materials fulfilling desired technological needs.
beryllides, and silicides, with the latter grouping manifesting the greatest Rather than depend entirely upon blind faith in the
dependence of hardness upon the free energy density. predictions of these search engines, we may employ any

number of explanation facilities to grasp the cascade’s
underlying reasoning. We have employed two very power-
ful techniques to explore the network schema: (1) the

the global plot of Fig. 17. Proceeding from right to left ability to supplement what would otherwise be sparse
within any of these linear series, we begin with a native databases with additional materials examples, as in Fig. 17,
structure such as a bare carbon or boron cage lattice, and (2) the ability to carry out a ‘post-mortem’ skeletoni-
typically possessing little if any standard free energy of zation of the constituent neural nets to identify underlying
formation. Interstitially dressing each of these already hard physical and chemical schema (Figs. 14–17). Analyzing
skeletal lattices with a second element generally creates the Creativity Machine output and function in these ways
opportunity for chemical bonding that now incrementally serves as a very useful adjunct to materials research.
changes hardness through higher bond energy per unit
volume. This picture is entirely consistent with the schema 5.2. Specific materials discoveries
analysis of Fig. 15, where we see the dominance of one
element in determining overall hardness, typically through After considerable exercise of the above data mining
elemental networks formed via s and p hybrid orbitals (i.e., techniques, we may summarize the major physical and

2 3the sp and sp hybridization prevalent within carbon, chemical findings as follows:
boron, beryllium and silicon lattices).
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1. Diamond, with a Mohs scale hardness of 10.0, remains completely connectionist design and its ability to propose
the hardest of the ultrahard phases, with a number of possibilities beyond its experience, such machines also
unexpected contenders closely following (see Tables present a compelling model of mind and of creative human
1–5). Foremost among these theoretical materials are cognition.
new carbon phases, hydrogen-deficient polymers of
carbon, boron, and beryllium, as well as carbon and
boron cage structures containing a range of interstitial Acknowledgements
atoms.
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